首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   6篇
安全科学   7篇
废物处理   3篇
环保管理   7篇
综合类   14篇
基础理论   10篇
污染及防治   48篇
评价与监测   1篇
社会与环境   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   8篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1970年   1篇
排序方式: 共有93条查询结果,搜索用时 0 毫秒
1.
介绍了光电微机测试系统的构成、测试原理及其在扁平硐室排污通风实验研究中的应用,并根据模拟实验结果,提出了硐室排污通风风量的通用计算式:Q=β(V/t)In(Co/C)。  相似文献   
2.
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis–Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d− 1 and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d− 1. Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of kmax = 0.1 µg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d− 1. The stable isotope-based biodegradation rate constant of 0.0027 d− 1 was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d− 1. With MM-kinetics a maximum degradation rate of kmax = 12 µg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor εfield of − 1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.  相似文献   
3.
In this paper, we present semi-analytical solutions for two-dimensional equations governing transport of Light Non-Aqueous Phase Liquids (LNAPL) in unconfined aquifers. The proposed model is based on sharp interface displacement and steady groundwater flow assumptions, where both the water–LNAPL interface and the LNAPL–air interface are represented as sharp interfaces. In the case of steady groundwater flow, these equations can be reduced to a two-dimensional nonlinear solute transport equation, with the LNAPL thickness in the free product lens being the primary unknown variable. The linearized form of this solute transport equation falls into the category of two-dimensional transport equation with time-dependent dispersion coefficients. This equation can be solved analytically for an infinite domain region. In this paper, the general form of the analytical solution for the transport equation, as well as the solutions for some specific cases are presented. To demonstrate the utility of the proposed solution, numerical results obtained for two example problems are discussed and presented comparatively with a finite-element solution and other more restrictive solutions available in the literature. Although the solutions discussed in this paper have some simplifying assumptions, such as sharp-interfaces between fluid phases, steady groundwater flow and homogeneous aquifer properties, the semi-analytical solutions presented in this study may be used effectively as bench mark solutions in evaluating LNAPL migration in the subsurface. These solutions are simple and cost effective to implement and may be used in the calibration of other more complex numerical solutions that can be found in the literature.  相似文献   
4.
The practice of contaminant transport and remediation has shown significant progress in recent years. However, despite the significant progress made, remediation efforts are often delayed by extremely long breakthrough curve tails that render efforts to bring the level of contaminants below the regulatory standards inefficient. One hypothesis is that these long tails are due to the reservoir-like slow diffusive processes in soil micropore zones. This study compares the effects of micropores at macroscopic and microscopic levels and establishes a link between these approaches for validation and calibration purposes. The link between macroscopic and microscopic levels is established through comparisons and testing of the two models while incorporating appropriate scale and boundary effects. Despite the differences in conceptual approaches and simulation time, the two approaches rendered meaningful results. The link helps forecast the effects of micropore zone transport processes in the subsurface efficiently and thus allows development of numerical tools that could contribute towards more efficient remediation design.  相似文献   
5.
A study of the relationship among cloudiness, precipitable water vapor, stability and precipitation is presented for the Texas High Plains. A study of clouds during periods of above-normal rainfall indicates that precipitation during late fall and winter is associated with stratiform clouds which develop in conjunction with cyclonic activity. Spring and summer precipitation is most highly correlated with cumuliform clouds characteristic of convective activity. Investigation of other macroscale atmospheric features indicates that wet periods are further characterized by atmospheric instability and above-normal amounts of precipitable water vapor and water-vapor flux. Dry periods are associated with atmospheric circulation patterns which either serve to cut off the supply of low-level moisture, produce subsidence and consequent atmospheric stability, or both.  相似文献   
6.
Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.  相似文献   
7.
A field study at Coeur dAlene Lake, Idaho, USA, was conducted between October 1998 and August 2001 to examine the potential importance of sediment–water interactions on contaminant transport and to provide the first direct measurements of the benthic flux of dissolved solutes of environmental concern in this lake. Because of potential ecological effects, dissolved zinc and orthophosphate were the solutes of primary interest. Results from deployments of an in situ flux chamber indicated that benthic fluxes of dissolved Zn and orthophosphate were comparable in magnitude to riverine inputs. Tracer analyses and benthic-community metrics provided evidence that solute benthic flux were diffusion-controlled at the flux-chamber deployment sites. That is, effects of biomixing (or bioturbation) and ground-water interactions did not strongly influence benthic flux. Remediation efforts in the river might not produce desired water-quality effects in the lake because imposed shifts in concentration gradients near the sediment–water interface would generate a benthic feedback response. Therefore, development of water-quality models to justify remediation strategies requires consideration of contaminant flux between the water column and underlying sediment in basins that have been affected by long-term (decadal) anthropogenic activities.  相似文献   
8.
细河底泥污染特征分析   总被引:2,自引:0,他引:2  
应用分析技术手段 ,对细河底泥污染状况进行监测、调查 ,从而了解细河底泥污染状况 ,并分析主要污染物的分布特征  相似文献   
9.
针对炼油厂蒸汽疏水器、锅炉排污、除氧器造成的能源浪费问题进行分析,并提出控制和解决的办法。  相似文献   
10.
The effects of biofilm growth on flow and solute transport through a sandblasted glass parallel plate fracture was investigated. The fracture was inoculated using soil microorganisms. Glucose, oxygen and other nutrients were supplied to support growth. The biomass initially formed discrete clusters attached to the glass surfaces, but over time formed a continuous biofilm. From dye tracer tests conducted during biofilm growth, it was observed that channels and low-permeability zones dominated transport. The hydraulic conductivity of the fracture showed a sigmoidal decrease with time. The hydraulic conductivity was reduced by a factor of 0.033, from 18 to 0.6 cm/s, corresponding to a 72% decrease in the hydraulic aperture, from 500 to 140 microm. In contrast, the mass balance aperture, determined from fluoride tracer tests, remained relatively constant, indicating that the impact of biomass growth on effective fracture porosity was much less than the effect on hydraulic conductivity. Analyses of pre-biofilm tracer tests revealed that both Taylor dispersion and macrodispersion were influencing transport. During biofilm growth, only macrodispersion was dominant. The macrodispersion coefficient alpha(macro) was found to increase logarithmically with hydraulic conductivity reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号